
Objective-C

Objective-C

Objective-C Features

All OOP properties are supported, with these
qualifications:

Every class is a subclass of some other class,
inheriting ultimately from the root Object class.

Objective-C does not support multiple inheritance.

Class methods, instance methods, and instance
variables are inherited by subclasses. Static
variables can be used as "class variables" but are
not inherited by subclasses.

All method binding is dynamic.

3 - 1

Objective-C

Syntax of Objective-C

The syntax of Objective-C is the same as standard C,
with the following additions:

+ indicates a class method.

- indicates an instance method.

[] indicates sending a message.

: A message argument follows a colon.
The colon is part of the message name.

3 - 2

Objective-C

Syntax of Objective-C
(continued)

id a new variable type meaning:

a pointer to an object (class
unspecified, dynamic typing).

self a pointer to the object receiving a
message, set by the runtime system on
entry to the method.

super a reference to the superclass of the

object sending a message to super.

3 - 3

Objective-C

Syntax of Objective-C
(continued)

#import #Import is just like C #include, but

will not duplicate previously
included files.

< > indicates a system file.

" " indicates a local file.

@keyword defines start and end of code
sections.

3 - 4

Objective-C

Class Definitions

The class definition is the prototype for a kind of object.
It declares the instance variables and defines the set of
methods that all objects in the class can use.

Classes are defined in two separate parts (information
hiding):

Interface file. The public declarations of the class.

Implementation file. The private definitions of the
class.

3 - 5

Objective-C

Interface File

- Declares the interface (the instance variables and
methods) to the new class.

- Has a ".h" extension by convention.

- Specifies the name of the superclass and imports
the interface file of the superclass.

- The interface is the public declaration of the class
and is all that a user will see.

3 - 6

Objective-C

Example: The Apple class.

Recall the Apple class inheritance hierarchy:

Fruit

Apple

-size {...}

-setSize: {...}

size

-color {...}

-grow {...}

color

Object
isa +alloc {...}

 -init {...}

3 - 7

Objective-C

Interface (Header) File (Apple.h)

#import "Fruit.h"

@interface Apple:Fruit

/* Instance Variables */
{

char* color;
}

 /* Methods */
- (char *)color;
- grow;

@end

3 - 8

Objective-C

Implementation File

- Defines the class and contains the code that
implements it.

- Has a ".m" extension by convention.

- Must import the interface file of its own class.

- Must also import the interface files of any objects
it will send messages to.

- The implementation is private to the developer of
the class.

3 - 9

Objective-C

Implementation File (Apple.m)

#import "Apple.h"
@implementation Apple
/* Return the present color */
-(char *)color{

return color;
}
/* Grow the apple */
-grow{

size = size + 1;
return self;

}
@end

Note: Since size is an inherited instance variable, it
might be wiser to write:

[self setSize:([self size]+1)];

3 - 10

Objective-C

Objects in Memory

For each class used in a program, the following is in
memory:

Class Object

There is one copy of each class object. It contains the
shareable code for the methods, and other
information describing the structure of the class.
This class object has links up the inheritance chain
to superclass class objects.

3 - 11

Objective-C

Objects in Memory
(continued)

Instances

Each instance appears as simply a data structure
containing that instance’s private copies of the
instance variables. The isa variable points to the
instance’s Class Object where messages will be
directed in search of a method, following the
inheritance chain as necessary.

3 - 12

Objective-C

Example: Class objects and instances in memory.

code

code

code

myApple yourApple
isa
size=7
color=GREEN

isa
size=3
color=RED

Object

Fruit

Apple

-init

-size
-setSize:

-color
-grow

+alloc code
Class

Objects:

Shared

code

of the

two

instances

Private

data

of the

two

instances

3 - 13

Objective-C

Categories

A category specifies additions to an existing class,
which are then available to all instances of the class
or its subclasses.

Only methods can be added, not instance variables.

Methods inherited from the superclass can be
overriden, but not methods defined elsewhere in the
class itself.

Categories are defined similar to subclasses: They
require an interface file and an implementation file.

3 - 14

Objective-C

Example: Adding to the Fruit class

Interface File (RealFruit.h)

#import "Fruit.h"
@interface Fruit(RealFruit)
- rot; //new method

@end

Implementation File (RealFruit.m)

#import "RealFruit.h"
@implementation Fruit(RealFruit)
- rot{

<code to turn color darker>
return self;

}
@end

3 - 15

Objective-C

Categories (cont’d)

In the example above, all instances of the Fruit
class, or of subclasses of Fruit, will now have the
rot method.

This is useful when the programmer does not have
access to the original class to modify it (because it
was defined by someone else).

Category vs. Subclass: Subclassing Fruit to get a
RealFruit class would allow creating instances of
RealFruit with all of the desired behavior. However,
instances of Fruit or its subclasses would not have
the new behavior. With a category they would.

3 - 16

Objective-C

Naming Conventions

- Case
Use uppercase letters instead of the underscore "_"
character.

Ex: nameValue

- Class Names
Begin with upper case.

Ex: Apple

3 - 17

Objective-C

Naming Conventions
(continued)

- Variables
Begin with lower case.

Ex: myApple

- Methods
Begin with lower case.

Ex: grow

3 - 18

Objective-C

Methods and Messages

- Method refers to the definition in the implementation
file.

- Message refers to the invocation of a method at
runtime.

- Method: like a C-function definition.

- Message: like a C-function call.

- Message Sending --> Method Invocation

3 - 19

Objective-C

Message Expression

[receiver message];
Sends message to receiver. The name of the

message is called the selector.

myColor=[myApple color];
Sends color message to myApple. A value is

returned and assigned to myColor.

[banana color:"yellow"];
Sends color: message (pronounced "color

colon") to banana. Argument passed is

"yellow". (Not the same message as color.)

3 - 20

Objective-C

Message Expression (continued)

[box setSide:1 toColor:"red"];
Sends setSide:toColor: message to box.

Two arguments are passed, 1 and "red".

[myView moveTo:x :y];
Sends moveTo:: message to myView. Two

arguments are passed, x and y.

3 - 21

Objective-C

Class and Instance Methods

Messages to invoke class methods must be sent to the
class object. The most common class method is
alloc to allocate memory for (to create) a new

instance of a class.

Messages to invoke instance methods are sent only to
instances.

3 - 22

Objective-C

Creating a New Instance

When creating a new instance, first message the class
object to allocate the memory, then initialize the new
instance:

myApple = [Apple alloc];
[myApple init];

Since alloc returns the id of the new instance, and
init returns self, this is best done (and should be done)
in combination:

myApple = [[Apple alloc] init];

Note: For View objects, use initFrame: instead of init.

3 - 23

Objective-C

Returning Self

In the previous example, init returned self as the return

value of the method. All methods should return self by

default unless they must explicitly return some other
value. This allows nested calls. For example,

[myBanana setSize:2];
[myBanana color:"yellow"];

If setSize: returns self, these can be nested as follows:

[[myBanana setSize:2] color:"yellow"]

3 - 24

Objective-C

Method Overriding

In general, a subclass inherits all of the methods of its
superclass. For example, a size method was defined

in the Fruit class and was inherited by Apple. A
message to myApple invokes Fruit’s implementation:

[myApple size] //inherited size method

However, if Apple were to define its own version of
size in its implementation file, the message to

myApple would go to Apple’s implementation instead,

thus overriding Fruit’s implementation.

3 - 25

Objective-C

Example: Overriding the size method in Apple.

code

code

myApple yourApple
isa
size=7
color=GREEN

isa
size=3
color=RED

Object

Fruit

Apple

-init

-size
-setSize:

-color
-grow

+alloc code
Class

Objects:

Shared

code

of the

two

instances

Private

data

of the

two

instances

-size code

3 - 26

Objective-C

Method Overriding using super

Frequently the goal in overriding the superclass’ method is to
enhance, not replace, its behavior. Below, all the
functionality of the superclass’ method is kept, while
adding functionality (<extra code>) in the subclass.
Use super to get to the superclass implementation.

-methodName /* method defined in subclass */
{

[super methodName] //super’s method first
<extra code>
return self;

}

3 - 27

Objective-C

Method Overriding using super
(continued)

The root class Object defines a default init method.
Classes wishing to add their own initialization code when
instances are created must first invoke all inherited
initialization code.

For example, if all new instances of Apple must be initialized
with a size of 1:

-init{/* Init method for Apple class*/
[super init] //first, inherited init
[self setSize:1] //<extra code>
return self;

}

3 - 28

Objective-C

Method Overriding using super
(continued)

Another example: Suppose Macintosh is a subclass of
Apple, and every time it grows, its color gets darker.
The grow method for Macintosh might look like:

-grow /* method defined in Macintosh */
{

[super grow] //Apple’s method first
<extra code to set to a darker color>
return self;

}

3 - 29

Objective-C

References

Object-Oriented Programming: An Evolutionary Approach, by Brad Cox,

Addison-Wesley, 1987. This book has Objective-C examples, but is

best for background information, not as a reference manual.

An Introduction to Object-Oriented Programming, by Timothy Budd,

Addison-Wesley, 1991. An excellent book on OOP, with comparisons

between Objective-C, C++, Object Pascal, and Smalltalk.

Objective-C : Object-Oriented Programming Techniques, by Lewis J.

Pinson & Richard S. Wiener, Addison-Wesley, 1991. A good book for

OOP with Objective-C examples.

Documentation manuals from NeXT Computer, Inc.

3 - 30

